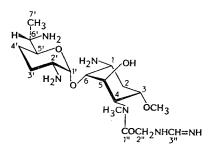
Notes

2"-N-FORMIMIDOYLSPORARICIN A PRODUCED BY SACCHAROPOLYSPORA HIRSUTA SUBSP. KOBENSIS

Hamao Umezawa, Shuichi Gomi, Yuji Yamagishi, Tamami Obata, Takako Ikeda, Masa Hamada and Shinichi Kondo


Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication June 3, 1986)

Sporaricin A, an aminoglycoside antibiotic containing a 1,4-diaminocyclitol was found by DEUSHI et al.¹⁾ in the culture filtrate of Saccharopolyspora hirsuta subsp. kobensis. Related N-formimidoyl antibiotics, 2"-N-formimidoylfortimicin A (dactimicin)²⁾ and 2"-N-formimidoylistamycins A and B³⁾ were found by INOUYE et al. and by KONDO et al. in culture filtrates of Dactylosporangium matsuzakiense SF-2052 and Streptomyces tenjimariensis SS-939, respectively. In this paper, we will report the isolation and characterization of another related antibiotic, 2"-N-formimidoylsporaricin A produced by the strain MG937-14F1. This strain was isolated from a soil sample collected at a garden of our Institute and classified into Saccharopolyspora hirsuta subsp. kobensis.⁴⁾ The production of 2"-N-formimidoylsporaricin A by the sporaricinproducing strain has never been reported before.

Fermentation and Isolation

Strain MG937-14F1 was cultured at 30°C for

3 days on a rotatory shaker (180 rpm) in a 500ml baffled Erlenmeyer flask containing 110 ml of a seed medium [dextrin 2%, galactose 2%, peptone (Bacto-Soytone) 1%, corn steep liquor (Nisshoku) 0.5%, (NH₄)₂SO₄ 0.2% and CaCO₃ 0.2%, pH 7.4]. The seed culture (2.2 ml) thus prepared was inoculated into 110 ml of a production medium consisting of starch 3%, soybean meal (Nisshin) 1.5%, corn steep liquor 0.5%, yeast extract (Oriental) 0.2%, NaCl 0.3%, CaCO₃ 0.3%, MgSO₄.7H₂O 0.05% and CoCl₂.6H₂O 0.001% (pH 7.0) in a flask and cultured at 27°C for 4 days on a rotatory shaker.

The culture broth was harvested from 45 flasks and combined. It was suggested to contain 5.7 µg/ml of 2"-N-formimidoylsporaricin A by the cylinder plate test using Bacillus subtilis PCI219 as the test organism and pure 2"-N-formimidoylsporaricin A sulfate (610 μ g/ mg) as the standard. After filtration at pH 2.0, the antibiotic in the filtrate (adjusted to pH 7.0, 4.03 liters) was adsorbed on a column of Amberlite IRC-50 (70% Na+, 200 ml) and eluted with 1 N HCl. The antibiotic in the active eluate (pH 7.2, 230 ml, 12.4 μ g/ml) was readsorbed on a column of charcoal (2 g) and eluted with 0.05 N HCl in 80% aq methanol. The active eluate (65 ml) was concd to dryness to give the crude powder (152 mg, 21.3 μ g/mg) in 14.1% yield from the filtrate. By HPLC analysis⁵⁾ of components, the crude powder was shown to contain 2"-N-formimidoylsporaricin A (32.84 minutes) at 1.6% and sporaricin A (21.49 minutes) at 0.3%.

The crude powder was combined with other similar samples (91 mg of 63.9 μ g/mg and 72 mg of 21.4 μ g/mg) and dissolved in water (10 ml, 1,059.3 μ g/ml). To the solution was added sodium *p*-toluenesulfonate (200 mg) as the organic counter ion and the solution was adsorbed on a column of Diaion HP-20 (10 ml). The column was developed successively with 50 ml of water, each 50 ml, of 2.5%, 5.0%, 7.5%, 10.0% and 12.5% aq methanol and 100 ml of 15% aq methanol. The eluates were cut into 5-ml fractions. Fractions (Nos. 41~82, 260 ml, 24 μ g/ml) containing the antibiotic were combined and concd to 10 ml. Purification

Table 1. ¹H NMR chemical shifts of 2"-N-formimidoylsporaricin A (1) and sporaricin A (2) in D_2O at pD 5.0.

Ducton	1		2	
Proton	δ (ppm)	Multiplicity	δ (ppm)	
1-H	3.92	ddd	3.90	
$2-H_{ax}$	1.86	ddd	1.84	
$2-H_{eq}$	2.66	dddd	2.63	
3-H	4.09	ddd	4.06	
4 - H	4.38	dd	4.36	
5-H	4.47	dd	4.43	
6-H	4.23	br	4.21	
$3-OCH_3$	3.48	s	3.45	
$4-NCH_3$	3.14	s	3.09	
1′-H	5.51	d	5.49	
2′-H	3.64	ddd	3.63	
$3'-H_2$	2.03~2.14	m	$2.02 \sim 2.12$	
$4'-H_{ax}$	1.60	m	1.58	
$4'-H_{eq}$	2.03~2.14	m	2.02~2.12	
5'-H	3.86	ddd	3.84	
6′-H	3.39	dq	3.38	
7'-H ₃	1.35	d	1.33	
2''-H _a	4.37	d	4.03	
$2^{\prime\prime}$ -H _b	4.47	d	4.12	

Table 2. ¹³C NMR chemical shifts of 2"-Nformimidoylsporaricin A (1) and sporaricin A (2) in D_2O at pD 5.0.

	<u> </u>	1	2
Carbon	δ (ppm)	Multiplicity	δ (ppm)
1	47.5	d	47.3
2	29.5	t	29.5
3	72.2	d	72.0
4	56.7	d	56.7
5	68.1	d	68.1
6	73.1	d	73.2
3-OCH ₃	56.7	q	56.6
$4-NCH_3$	32.1	q	32.1
1′	92.6	d	92.6
2'	49.8	d	49.7
3'	21.5	t	21.4
4′	26.4	t	26.5
5′	71.2	đ	71.0
6′	52.0	d	51.9
7′	15.2	q	15.3
1″	169.2	s	168.4
2‴	44.3	t	41.4
3‴	156.1	d	

 δ (ppm) were measured from sodium 3-trimethyl-silyl-1-propanesulfonate (0 ppm) as the internal reference.

 δ (ppm) were measured from dioxane (67.4 ppm) as the internal reference.

Test organism	µg/ml	Test organism	µg/ml
Staphylococcus aureus FDA 209P	0.78	Klebsiella pneumoniae PCI602	1.56
S. aureus Smith	0.39	K. pneumoniae 22#3038	3.13
S. aureus Ap01	6.25	Shigella dysenteriae JS11910	3.13
S. epidermidis 109	0.78	S. flexneri 4b JS11811	3.13
Micrococcus flavus FDA16	1.56	S. sonnei JS11746	3.13
M. luteus PCI1001	0.78	Salmonella typhi T-63	0.78
Bacillus anthracis	0.78	S. enteritidis 1891	3.13
B. subtilis PCI219	0.78	Proteus vulgaris OX19	1.56
B. subtilis NRRL B-558	0.39	P. rettgeri GN311	0.78
B. cereus ATCC10702	6.25	P. rettgeri GN466	0.78
Corynebacterium bovis 1810	0.39	Serratia marcescens	3.13
Mycobacterium smegmatis ATCC607	0.78	Serratia sp. SOU	50
Escherichia coli NIHJ	0.78	Serratia sp. 4	25
E. coli K-12	0.78	Providencia sp. Pv16	1.56
<i>E. coli</i> K-12 R5	3.13	Providencia sp. 2991	1.56
<i>E. coli</i> K-12 R388	0.78	Pseudomonas aeruginosa A3	1.56
E. coli K-12 J5R11-2	0.78	P. aeruginosa No. 12	25
E. coli K-12 ML1629	1.56	P. aeruginosa H9	25
E. coli K-12 ML1630	1.56	P. aeruginosa H11	50
E. coli K-12 ML1410	1.56	P. aeruginosa TI-13	25
<i>E. coli</i> K-12 ML1410 R81	1.56	P. aeruginosa GN315	25
E. coli K-12 LA290 R55	1.56	P. aeruginosa 99	> 100
E. coli K-12 LA290 R56	1.56	P. aeruginosa B-13	>100
<i>E. coli</i> K-12 LA290 R64	1.56	P. aeruginosa 21-75	50
<i>E. coli</i> W677	0.78	P. aeruginosa PSTI	50
<i>E. coli</i> JR66/W677	0.78	P. aeruginosa ROS134/PU21	> 100
E. coli K-12 C600 R135	25	P. aeruginosa K-Ps102	50
E. coli JR225	0.78	P. maltophilia GN907	> 100

Table 3. Minimum inhibitory concentrations of 2"-N-formimidoylsporaricin A.

of the antibiotic in the concentrate was achieved by Amberlite CG-50 (70% Na⁺, 6 ml) column chromatography eluted with 0.5 N H₂SO₄ followed by charcoal (500 mg) column chromatography eluted with 0.01 N H₂SO₄. After neutralizing the eluate with Amberlite IR-45 (OH⁻) and concentrating to 4 ml, the concentrate was passed through a column of Amberlite IRA-400 (SO₄²⁻, 4 ml) and developed with water. The active effluent (4 ml) was lyophilized to give 7.6 mg of pure 2"-N-formimidoylsporaricin A disulfate tetrahydrate (610 μ g/mg) as a colorless hygroscopic powder in 43.8% yield from the crude powder.

Properties and Structure

2"-N-Formimidoylsporaricin A disulfate tetrahydrate: No definite mp $[\alpha]_{D}^{27}$ +65.8° (c 0.5, H_2O), secondary ion mass spectrum (SI-MS) m/z417 (MH⁺), IR (KBr) cm⁻¹ 3400, 2950, 1710 (C=N⁺), 1640, 1490, 1120, 1050, 990. Anal Calcd for $C_{18}H_{36}N_6O_5 \cdot 2H_2SO_4 \cdot 4H_2O$: C 31.57, H 7.07, N 12.27, S 9.36. Found: C 31.37, H 6.48, N 11.47, S 9.20. By high-voltage paper electrophoresis with 3,500 V for 15 minutes in HCOOH - CH₃COOH - H₃O (1:3:36), the antibiotic moved toward the cathode with Rm (relative mobility to alanine) 2.01. The ¹H and ¹³C NMR chemical shifts in D₂O (pD 5.0) were compared with those of sporaricin A⁶⁾ as shown in Tables 1 and 2, respectively. The ¹³C NMR data of the antibiotic showed good agreements with those of sporaricin A except the 2"-C and 3"-C signals as shown in Table 2. These two signals were easily assigned from those (44.1 and 155.8 ppm) of 2"-N-formimidoylistamycin B.⁵⁾ Therefore, the structure of the antibiotic was determined to be 2"-N-formimidoylsporaricin A.

As shown in Table 3, the antibiotic had strong antibacterial activity against Gram-positive and Gram-negative bacteria including aminoglycoside-resistant bacteria.

References

- DEUSHI, T.; A. IWASAKI, K. KAMIYA, T. KUNI-EDA, T. MIZOGUCHI, M. NAKAYAMA, H. ITOH, T. MORI & T. ODA: A new broad-spectrum aminoglycoside antibiotic complex, sporaricin. I. Fermentation, isolation and characterization. J. Antibiotics 32: 173~179, 1979
- INOUYE, S.; K. OHBA, T. SHOMURA, M. KOJIMA, T. TSURUOKA, J. YOSHIDA, N. KATÖ, M. ITÖ, S. AMANO, S. OMOTO, N. EZAKI, T. ITÖ, T. NIIDA & K. WATANABE: A novel aminoglycoside antibiotic, substance SF-2052. J. Antibiotics 32: 1354~1356, 1979
- 3) KONDO, S.; Y. HORIUCHI, D. IKEDA, S. GOMI, K. HOTTA, Y. OKAMI & H. UMEZAWA: 2"-N-Formimidoylistamycin A and B produced by *Streptomyces tenjimariensis*. J. Antibiotics 35: 1104~1106, 1982
- 4) IWASAKI, A.; H. ITOH & T. MORI: A new broad-spectrum aminoglycoside antibiotic complex, sporaricin. II. Taxonomic studies on the sporaricin producing strain Saccharopolyspora hirsuta subsp. kobensis nov. subsp. J. Antibiotics 32: 180~186, 1979
- HORIUCHI, Y.; D. IKEDA, S. GOMI, S. KONDO & H. UMEZAWA: Isolation and synthesis of 2"-N-formimidoylistamycins A and B, new istamycin components. Carbohydr. Res. 109: 25~ 31, 1982
- 6) DEUSHI, T.; M. NAKAYAMA, I. WATANABE, T. MORI, H. NAGANAWA & H. UMEZAWA: A new broad-spectrum aminoglycoside antibiotic complex, sporaricin. III. The structure of sporaricins A and B. J. Antibiotics 32: 187~192, 1979